Observables on synaptic algebras
نویسندگان
چکیده
Synaptic algebras, introduced by D. Foulis, generalize different algebraic structures used so far as mathematical models of quantum mechanics: the traditional Hilbert space approach, order unit spaces, Jordan effect MV-algebras, orthomodular lattices. We study sharp and fuzzy observables on two special classes synaptic algebras: called generalized Hermitian algebras which are Banach duals. Relations between these types shown.
منابع مشابه
Quantum Observables Algebras and Abstract Differential Geometry
We construct a sheaf theoretical representation of Quantum Observables Algebras over a base Category equipped with a Grothendieck topology, consisting of epimorphic families of commutative Observables Algebras, playing the role of local arithmetics in measurement situations. This construction makes possible the application of the methodology of Abstract Differential Geometry in a Category theor...
متن کاملEffect algebras, witness pairs and observables
The category of effect algebras is the Eilenberg-Moore category for the monad arising from the free-forgetful adjunction between categories of bounded posets and orthomodular posets. In the category of effect algebras, an observable is a morphism whose domain is a Boolean algebra. The characterization of subsets of ranges of observables is an open problem. For an interval effect algebra E, a wi...
متن کاملConstruction of Field Algebras with Quantum Symmetry from Local Observables
It has been discussed earlier that (weak quasi-) quantum groups allow for conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses to the reconstruction of quantum symmetries and algebras of eld operators. For every algebra A of observables...
متن کاملL∞-algebras of Local Observables from Higher Prequantum Bundles
To any manifold equipped with a higher degree closed form, one can associate an L∞-algebra of local observables that generalizes the Poisson algebra of a symplectic manifold. Here, by means of an explicit homotopy equivalence, we interpret this L∞-algebra in terms of infinitesimal autoequivalences of higher prequantum bundles. By truncating the connection data on the prequantum bundle, we produ...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuzzy Sets and Systems
سال: 2021
ISSN: ['1872-6801', '0165-0114']
DOI: https://doi.org/10.1016/j.fss.2020.05.015